Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Proceedings of 2016 International Conference on Data and Software Engineering, ICoDSE 2016, vol: , (2017)

Classification of Indonesian news articles based on Latent Dirichlet Allocation

Kusumaningrum R., Wiedjayanto M.I.A., Adhy S., Suryono

Abstract

A massive number of news articles leads to the potential problem in automatic classification task. The discussions on classification of English news articles have been widely studied. However, it is in contrast to automatic classification of Indonesian news articles. The classification method that has been implemented is limited to conventional methods, such as Naïve Bayes and Support Vector Machine. Both methods is rigid in classify a document into one topic. Therefore, we implement one of Topic Modeling methods which represent a document as a distribution of topics and a topic is represented by a set of words. The method is Latent Dirichlet Allocation. The experimental study based on 10-fold cross validation strategy is conducted by employing several parameter includes number of topics (5, 10, and 15) and both LDA’s hyperparameters (0.001, 0.01, and 0.1). The result shows that the best overall accuracy is about 70% for classifying documents of Indonesian news articles into 5 classes, i.e. economic, tourism, criminal, sport, and politics. © 2016 IEEE.

Keyword: Classification; Indonesian news articles; Latent Dirichlet Allocation; Overall accuracy; Text processing

DOI

× How can I help you?